Advanced imaging collects insights into museum’s birds and their evolution

Using advanced NIF imaging techniques to study bird skulls is helping researchers understand how they see, how they evolved to hunt at night, and the best ways to protect them.

In the process, researchers are also digitising valuable museum collections, connecting communities to nature and science and unlocking possibilities for researchers to investigate our natural world.

NIF Micro-computed tomography (CT scanning) at the University of Queensland’s Centre for Advanced Imaging has been used to scan 30 raptor skulls from Australian museums, create 3D reconstructions, measure and then study the anatomy for tell-tale signs of a bird’s visual powers.

Research published in Royal Society Open Science compared the world’s only nocturnal hawk, the Australian letter-winged kite Elanus scriptus, to other hawks and falcons with differing hunting styles.

Associate Professor in Evolutionary Biology at Flinders University Vera Weisbecker said findings threw into doubt long-held views that changes to skeletal structure were needed for evolution.

The research sought to understand whether evolutionary changes to the eye-area of the skull was evidence of the kite’s adaptation to night-time hunting, Dr Weisbecker said.

“The answer is no. In fact, there are two close relatives of the letter-winged kite that have a similar bony visual system, but both hunt in daylight,” she said.

The findings have implications for the study of evolution, with researchers often deducing that changes in skeletal remains are linked to behavioural changes.

“That’s not necessarily the whole story. In this instance, there’s no difference between the eye regions in the skulls of the night-time and the day-time hunters, so if you were just looking at the skull, you’d never know.”

Dr Weisbecker said different birds had greatly adapted their vision to have excellent visual sensitivity, sharpness, colour discrimination or even UV wavelength detection.

For Australia’s letter-winged kite, it’s possible that the nocturnal bird also picks up odours and movement, as well as adjusting its hunting methods.

CT-scanning the 30 birds of prey was primarily undertaken by CAI’s Dr Karine Mardon, on NIF-funded equipment, with skulls provided by Queensland Museum.

Dr Mardon said the imaging techniques, teamed with recent advances in anatomical understanding, opened the door to a wealth of new knowledge without needing live birds or their tissues.

CAI was the ideal place to undertake the research, enabled through national investment in imaging equipment and expertise, data analysis capability, and existing relationships with the Queensland Museum and Flinders University, she said.

Dr Weisbecker said obtaining eyes and brains of rare species was generally not feasible but some aspects of their anatomy could be estimated from skulls.

“We are extremely lucky to have Australia’s amazing museum collections at our disposal to help us understand this bird without the need to find and disturb the species,” she said.

“The kinds of things you can study closely with CT scanning are the size of their eyes and their position in the skull – are they facing forward or more on the side?”

PhD student Aubrey Keirnan compared 3D reconstructions of the letter-winged kite’s skull and brain with other birds of prey in the Weisbecker lab.

“The diversity among hawks that are active during daylight is possibly the most striking between the Spotted Harrier and the Pacific Baza,” she said.

“Both are incredible predators, but one species resembles owls while the other is much more pigeon-like in appearance.

“These two species really highlight how adaptable and diverse the visual systems of birds are, even amongst species within the same family.

“You can have birds that are anatomically similar but behave differently – and species that are behaviourally similar but anatomically different. Both sides of the coin are true.”

But Dr Weisbecker said the research was not just about insights into evolution.

The Australian letter-winged kite lives in remote, arid Australia, avoids human settlements and is highly elusive. It is listed as near-threatened, with population estimates varying between 670 and 6,700, she said.

“To conserve the species, it is critical that we understand its behavioural needs and capabilities, but these are extremely difficult to observe.

“Think about fences and powerlines potentially posing a greater threat to nocturnal birds than their daytime relatives.

“For example, in an earlier study, we found that the nocturnal night parrot is likely unable to see small objects because it may trade high resolution for higher contrast. This may put it at risk of hitting with thin fence wires.”

Dr Mardon has also scanned the bones of a night parrot, a bandicoot and many Australian marsupial mammals.

“We have an excellent working relationship with Queensland Museum, who trust us with handling some of their precious items,” she said.

Later this year CAI will install a new NIF-funded CT-scanner, a Yxlon FF35CT, along with new software to increase graphics capability, such as accurate reconstructions of soft tissue around the skull.

CAI expects greater demand for scanning which contributes to research on evolution, and Australia’s native flora and fauna.

Read the article on the Australian letter-winged kite Elanus scriptus here: Not like night and day: the nocturnal letter-winged kite does not differ from diurnal congeners in orbit or endocast morphology | Royal Society Open Science (royalsocietypublishing.org)


More about National Imaging Facility (NIF)

NIF is Australia’s advanced imaging network.

We provide open access to flagship imaging equipment, expertise, tools, data and analysis. We address Australia’s strategic science and research priorities, and this benefits Australian industry and helps keep Australians healthy.

NIF provides a full suite of advanced imaging capability including preclinical and clinical, human and animal imaging, radiochemistry and imaging data analysis. We focus on health and medical innovation, and also provide highly specialised capabilities for agriculture, materials science, museums and cultural applications.

NIF assembles partnerships that produce quality-controlled and harmonised data that provides invaluable evidence to make new discoveries, validate new products and demonstrate new therapies.

We partner with people who can translate their discoveries into real-world applications. NIF has helped Australians innovate in fields such as bioengineering, clinical science, biology, medical technology, pharmaceutical and non-pharmaceutical therapies, agriculture, materials, museums and cultural collections.

More about the Centre for advanced Imaging (CAI)

The Centre for Advanced Imaging (CAI) brings together the skills of a critical mass of researchers and ‘state-of-the-art’ research imaging instruments. It is the only facility of its type in Australia, one of only a handful in the world. The 5,500 m2, $55M CAI building was funded by the Federal Education Investment Fund in 2010 and contains over $50M of imaging and spectroscopy equipment, putting The University of Queensland’s researchers at the forefront of a field that is advancing swiftly.

Our researchers work on innovations in spectroscopic and imaging technology, imaging biomarker development and in biomedical research disciplines, frequently in collaboration with clinical research sites and other local, national, and international research institutes.  Find out more here

Inaugural NIF Scientific Symposium kicks off #NationalScienceWeek

Leading researchers, clinicians and industry attended the inaugural National Imaging Facility (NIF) Scientific Symposium on 12 August.

The event kicked off National Science Week for NIF, highlighting the critical role of collaboration in translating research challenges to benefit industry and keep Australians healthy, with the theme ‘National partnerships for innovation and impact’.

NIF CEO Prof Wojtek Goscinski said the Symposium was an excellent opportunity to highlight ground-breaking work from Australia’s world-class imaging community.

“It was a privilege to host experts from across Australia, including keynote speakers Prof Graeme Jackson, Prof Louise Emmet and Prof Gemma Figtree, whose work is at the leading edge of imaging globally,” Prof Goscinski said.

“I’d also like to extend my thanks to the presenters who delivered an excellent Technology Showcase session, and Health and Medical Translational Challenges session.

“A particular highlight was hearing from our industry partners, including Telix Pharmaceuticals, Clarity Pharmaceuticals, Cochlear and Nyrada, who discussed the way they engage with national imaging research infrastructure.

“NIF is privileged to have a strong network of world-leading expertise at our fingertips and it was an honour to bring some of these people together to present their work and share ideas at the 2022 Symposium,” he said.

Keynote presentations of the Symposium included:

  • ‘The Australian Epilepsy Project’, Prof Graeme Jackson
  • From mouse to Medicare: the PSMA story in Australia’, Prof Louise Emmett
  • Coronary artery imaging to inform the next Frontier of heart attack prevention’, Prof Gemma Figtree

The Technology Showcase session highlighted NIF’s latest capabilities, including tools for processing and interpreting data, and applications of imaging to solve complex problems, including:

  • ‘Ultra-high field magnetic resonance imaging’, Prof Leigh Johnston and Prof Markus Barth
  • ‘Bringing imaging to rural Australia with a national network of low field mobile MR scanners’, Dr Zhaolin Chen
  • ‘Australian Imaging Service: The national platform for trusted data management and analysis’, Dr Ryan Sullivan
  • ‘Magnetic Particle Imaging’, Dr Andre Bongers
  • An insight into MicroCT imaging: recent advances, applications and impact on research and innovation’, Ms Diana Patalwala
  • Preclinical Research: The Crucial Step in Medical Advancements’, Dr Chris Christou

The Health and Medical Translation Challenges session provided an opportunity for attendees to hear from clinicians and researchers about their journey to making translational impact, including:

  • Neuroimaging in clinical trials: Perspectives of a clinician-researcher’, A/Prof Sylvia Gustin
  • The Australasian Radiopharmaceutical Trials network (ARTnet)’, A/Prof Ros Francis

The Industry Discussion Panel opened up conversation on how imaging accelerates and underpins innovation and future opportunities, with speakers:

  • Dr David Cade, Chief Executive Officer, Telix Pharmaceuticals Asia Pacific
  • Dr Matt Harris, Chief Scientific Officer, Clarity Pharmaceuticals
  • Dr Zachary Smith, Director, Algorithms and Applications, Cochlear
  • Dr Jasneet Parmar, Neuroscience Researcher, Nyrada Inc

Members of the NIF network recognised internationally as in-person conferences return

[Pictured: UNSW-NeuRA Facility Fellow, Dr Michael Green presented a study titled “Effect of Compressed SENSE on Freesurfer parcellation precision” which was a collaboration between NeuRA researchers, Philips Australia and New Zealand, and UNSW.]

In-person events have returned – and over the last few months, leading edge experts from the NIF network have attended, presented, and taken the opportunity to collaborate at conferences like ANZSNM and ISMRM.

We’re proud to acknowledge the members of the NIF network who have presented their globally significant work to the greater imaging communities.

We congratulate University of Sydney-ANSTO Node Co-Director, Prof Fernando Calamante as President of ISMRM on the success of the 2022 31st Annual Meeting hosted in London, UK in May.

We also recognise the incredible achievement of Dr Shawna Farquharson as recipient of the ISMRT 2022 Distinguished Service Award at the same event.

Back in Australia, NIF kicked off events with a Molecular imaging and Radiopharmaceuticals Capability Showcase at ANZSNM. We were honoured to invite world-class speakers from within our network, Prof Steven Meikle, A/Prof Roslyn Francis, Prof Gary Egan, Prof Kristofer Thurecht and Dr John Bennett to present during the NIF session.

We look forward to seeing more of our network at upcoming events – stay tuned for the NIF Scientific Symposium next month in Sydney. Save the date for Friday 12 August.


Here are some more highlights from the NIF network attending events so far this year:

Markus Barth

QLD Node Director

ISMRM

 

Why did you attend? Many reasons: present group results; moderator of sessions; member of study groups and initiatives

 

What was the highlight of the event for you? Catching up with fellow researchers

 

What would you say to someone considering attending next meeting? Best check the hybrid setup, i.e. what is available in person and what is available online

Michael Green

NeuRA Facility Fellow

ISMRM

Why did you attend? Primarily it was a great way to re-connect with colleagues and share ideas in an old-fashioned, non-Zoom type of way. I presented a study titled “Effect of Compressed SENSE on Freesurfer parcellation precision” which was a collaboration between NeuRA researchers, Philips Australia and New Zealand, and UNSW. The study assessed the reliability of an MRI acceleration techniques designed to speed up the time it takes to acquire images. We wanted to provide a guideline for MR researchers wanting to reduce scan time while acquiring high quality data.

 

What was the highlight of the event for you? The face-to-face aspect of a conference was a real highlight. It was a nice compliment and surprise to see Philips also present data from our study to a global audience as validation for their acceleration techniques employed on their MRI machines. I also received some interesting feedback regarding the study analysis which I may implement before publishing the manuscript.

 

What would you say to someone considering attending next meeting? Study the conference schedule well before attending then pick and choose which seminars you’d like to attend. Then talk to as many people as possible. In person!

Joseph Ioppolo

UWA Facility Fellow

ANZSNM

Why did you attend? This is a good meeting to attend to connect with the other radiochemists in Australia. Due to COVID I had not had a chance to do this in a long while. I was also very keen to see the Q-TRaCE labs at Royal Brisbane, as we have a good working relationship between them and us at Sir Charles Gairdner Hospital. I was able to let people know I had moved across to the NIF Node at UWA and was able to speak about our new lab and facilities being built now in Perth during my talk on the Saturday

What was the highlight of the event for you? While ANZSNM was a great chance to hear some great talks and connect with a lot of people, it was also exciting to tour the labs at Q-TRaCE and the Centre for Advanced Imaging at UQ, where we also had our national Cyclotron User Group meeting.

What would you say to someone considering attending next meeting? There are just not that many radiochemists in Australia, and the ANZSNM (along with the EPSM) is a great opportunity to see meet each other in person and see how the radiopharmaceuticals we make are being used to image and treat disease around the country.

 

Sjoerd Vos

UWA Facility Fellow

ISMRM

 

Why did you attend? I presented a project shared between my current role as NIF fellow and my previous job in London.

 

What was the highlight of the event for you? My highlight was discussing potential new collaborations within Australia and internationally.

 

What would you say to someone considering attending next meeting? I think this is also a key reason to go to these conferences – to help explore new collaborations to benefit our imaging centres and community.

Shenjun Zhong

Monash Informatics Fellow

ISMRM (Virtual)

Why did you attend? My abstract was accepted as an online power pitch presentation in the ISMRM 2022 conference. And I virtually co-chaired one of the gather.town sessions in the theme of imaging processing and analysis.

What was the highlight of the event for you? The main highlight was the talk provided by one of the famous AI researchers, Yann LeCun, and his topic was ‘Future AI research in medical imaging‘. The key take-home message is the shifting from supervised to self-supervised learning framework in general AI and medical imaging research.

NIF Molecular Imaging and Radiochemistry Showcase to be presented at ANZSNM

National Imaging Facility enables access to imaging capabilities across the country and will present a Molecular Imaging and Radiochemistry Showcase at ANZSNM 2022, featuring presentations from a range of research leaders from Australia’s advanced imaging network.

See the full ANZSNM program here.

Register to attend ANZSNM 2022.

National Imaging Facility: Molecular Imaging and Radiochemistry Showcase
Saturday 14 May 2022, 3:15pm – 4:15pm
Session Chair: Prof Wojtek Goscinski, CEO National Imaging Facility

TimeSpeakerTopic
3:15 – 3:20Professor Wojtek Goscinski

Chief Executive Officer
National Imaging Facility

Introduction to NIF Molecular Imaging and
Radiochemistry Showcase

3:20 – 3:30Professor Steven Meikle

Head of the Imaging Physics Laboratory, Brain and Mind Research Institute, University of Sydney

Total Body PET
3:30 – 3:40Associate Professor Roslyn Francis

Head of Department of Nuclear Medicine and WA PET Service, Sir Charles Gairdner Hospital, University of Western Australia

Radiochemistry activities in Western Australia
3:40 – 3:50Professor Gary Egan

Professor and Foundation Director, Monash Biomedical Imaging

Director, ARC Centre of Excellence for Integrative Brain Function

Australian Precision Medicine Enterprise
3:50 – 4:00Prof Kristofer Thurecht

Acting Deputy Director (Research Technologies) and Group Leader – Principal Research Fellow,

Centre for Advanced Imaging, University of Queensland

Affiliate Principal Research Fellow and Group Leader,

Australian Institute for Bioengineering and Nanotechnology

Alpha therapies and activities
4:00 – 4:10Dr John Bennett

Research Infrastructure Platform Leader – Biosciences,
ANSTO

ANSTO’s new NIF Alpha Radioisotopes and
Radiopharmaceuticals Facility

Imaging enabling nanomedicine to treat aggressive brain cancer

Image: Gadolinium enhanced MRI showing the bright brain tumour (red circle) compared to the normal brain tissue (yellow circle).

‘Nanomedicine’ sounds like a term you’d hear in a futuristic novel or an episode of Doctor Who, but cutting-edge scientists from the National Imaging Facility’s Node at the University of Queensland’s Centre for Advanced Imaging are already applying it to solve complex health challenges in collaboration with the Australian Institute for Bioengineering and Nanotechnology, and the Australian Research Council’s Centre of Excellence in Convergent BioNano Science and Technology and Training Centre in Biomedical Imaging Technology.

Nanomedicine applies nanoscale materials, such as nanoparticles and nanorobots (wow!) to the prevention and treatment of disease. Nanomedicine is a promising strategy to target tumours with chemotherapy in a safe and controlled manner.

This all sounds great, but within the context of the brain things get a little more complicated. For brain tumours, the integrity of the blood brain barrier (BBB) is central to its effective use as treatment.

The BBB is a protective barrier between the blood vessels and brain tissue, providing a defence against pathogens and toxins that may be present within the blood, while at the same time allowing vital nutrients to reach the brain.

While the BBB protects the brain against pathogens and toxins that could cause infection, it also blocks medicine from crossing the barrier in many cases, which can hamper the (often urgent) treatment of tumours, among other neurological disorders.

This is where imaging comes in…

UQ researchers have undertaken studies utilising NIF’s flagship preclinical magnetic resonance –positron emission tomography (MR-PET) system to develop hybrid imaging, combining the imaging of MRI with the information of PET.

Simultaneous MR-PET imaging enables experts to measure opening of the BBB using Gadolinium (Gd) contrast agents at the same time as delivering novel PET tracers and new theranostic candidates including nanomedicine.

These tools assist in investigating the link between BBB integrity and tumour diagnosis and treatment, and ensure the development of promising new treatments such as nanomedicine that can permeate the BBB.

BBB integrity: Tumour diagnosis and treatment

The rapid growth of brain tumours requires the formation of new vessels to supply increased demands for nutrients. The new vessels are leaky compared to normal brain vessels, where the BBB tightly regulates the transfer between blood and tissue.

The team have used Gd MRI to estimate how leaky the tumour vessels are. This information is vital for understanding how tumours are developing, and when and how diagnostic or therapeutic drugs can enter the tumour tissue.

In combination with new nanomedicines, there are also exciting new techniques that allow opening of the brain for treatment without surgery, which can increase risk for patients. These new imaging methods allow the opening of the brain to be accurately monitored to ensure entry of the treatment without any unrelated damage to the brain. 

So – our takeaway message? While advances in nanomedicine alone are exciting and important, the integration of nanomedicine and advanced imaging brings opportunity for exponential synergistic innovation in healthcare, that can improve outcomes for patients and ultimately has the potential to save lives.

For more information, contact Dr Gary Cowin, Queensland Facility Fellow, UQ Centre for Advanced Imaging.

#ImagingTheFuture Week: Unlocking solutions to major health challenges

#ImagingTheFuture Week: Unlocking solutions to major health challenges


Chan Zuckerberg Initiative’s (CZI) Imaging the Future Week puts a spotlight on the significance of imaging science in biomedicine, and the importance of building a vibrant imaging community across the world to tackle these challenges at scale.

Imaging science and the highly skilled researchers behind it are vital to addressing global health challenges, and driving innovation in disease management, prevention, and cure.

The National Imaging Facility (NIF) invests in state-of-the-art equipment and partners with world-class experts to process and interpret data and apply imaging to solve challenging health problems.

CEO Prof Wojtek Goscinski said he was proud of the NIF’s partnerships which enable the translation of discoveries through to real world applications to improve the health of the population.

“Advanced imaging techniques make it possible to deepen our understanding of health and disease in the human body through visualisation,” Prof Goscinski said.

“Imaging already plays a critical role in healthcare, and the acceleration of its advancements in biomedicine are positioning us, and our colleagues world-wide to continue this work well into the future.”

“We are supportive of the efforts of CZI and I’m excited for NIF to work alongside them and our other international imaging colleagues, building a cutting-edge imaging community at the forefront of global imaging research,” Prof Goscinski said.

You can find out more about Imaging the Future Week here.

Keep scrolling to check out some of the impressive imaging work from a few of the Australian National Imaging Facility’s Nodes.

Time-of-flight angiography of the human brain using 7 Tesla MRI – courtesy of the Centre for Advanced Imaging, University of Queensland

Human Tooth CT scan – courtesy of Diana Patalwala, University of Western Australia

Angiogram scanned on the Siemens 3T Skyra magnet – courtesy of the Large Animal Research and Imaging Facility, South Australian Health and Medical Research Institute

Tractography template image of a sham rat – courtesy of David Wright, The Florey Institute of Neuroscience and Mental Health

fMRI Short Course at UQ

From Friday 20th – Sunday 22nd November 2020, a broad audience of PhD students, postdocs, associate professors, a radiographer and a clinician attended the University of Queensland (UQ) Centre for Advanced Imaging (CAI) functional Magnetic Resonance Imaging (fMRI) short course.

Read More

National Preclinical PET QA

The NIF Molecular Imaging & Radiochemistry (MIR) Theme is a group of NIF Fellows, Directors, and users of NIF facilities that focus on state-of-the-art radiochemistry and molecular imaging applications using PET, SPECT, and MRI.

Integrating preclinical PET systems into a national resource requires the development of defined QA programs to monitor and integrate the data from individual systems. Hence, the MIR Theme initiated a national quality assurance (QA) program for the NIF preclinical PET instruments.

Read More

PET training for HDR

From July 14 – 17, four CIBIT HDR students, Saikat Ghosh, Vanessa Soh, Pragalath Sadasivam and Ting Xiang Lim, attended an in-depth training session on PET imaging. Run by Dr Karine Mardon, NIF Facility Fellow and Molecular Imaging Facility Manager at the Centre for Advanced Imaging, the course covered both molecular imaging theory and practical hands-on training relevant to the students’ research projects. 

Read More
Privacy Settings
Youtube
Vimeo
Google Maps