#WorldHealthDay: Imaging unlocking research to keep people healthy

#WorldHealthDay: As Australia’s advanced imaging network, we’re focused on addressing national science and research priorities to help keep people healthy. Our expertise, equipment and services are critical to Australia’s ability to translate health discoveries, undertake clinical trials and commercialise medical products.

The importance of protecting Australians from health threats is critical, as is Australia’s strong medical research capability and reputation for quality and standards.

The National Imaging Facility is unlocking solutions to the world’s biggest imaging challenges across commercial, clinical and research fields. We have helped Australians innovate in fields such as bioengineering, clinical science, biology, medical technology, pharmaceutical and non-pharmaceutical therapies.

Thousands of scientists, doctors, and professionals across hundreds of Australian institutions, companies and research organisations use our work to help answer their medical research questions. We also work with engaged volunteers and patients who make a valuable contribution to health and discovery by being part of research.

We’ve included some examples of the medical projects we’re proud to have partnered with to keep people healthy below:

Dr Ciara Duffy from Western Australia’s Harry Perkins Institute of Medical Research imaging the investigation of honeybee venom to treat breast cancer cells at the University of Western Australia’s Centre for Microscopy, Characterisation and Analysis in collaboration with Microscopy Australia

Associate Professor David Parsons and Dr Martin Donnelly performing preclinical testing of a ground-breaking and simple to use ‘field ventilator’ that can be locally produced at a low cost from easily acquired parts at SAHMRI, in collaboration with 4DMedical, and the University of Adelaide

Supporting Australian trials of Biogen’s Aducanumab (Aduhelm), the first disease modifying therapy for Alzheimer’s disease approved by the United States Food and Drug Administration (FDA) with the University of Melbourne, Herston Imaging Research Facility, the Hunter Medical Research Institute, Australian Imaging Biomarkers and Lifestyle Study of Ageing at The Florey Institute of Neuroscience and Mental Health and Austin Health

#ImagingTheFuture Week: Unlocking solutions to major health challenges

#ImagingTheFuture Week: Unlocking solutions to major health challenges


Chan Zuckerberg Initiative’s (CZI) Imaging the Future Week puts a spotlight on the significance of imaging science in biomedicine, and the importance of building a vibrant imaging community across the world to tackle these challenges at scale.

Imaging science and the highly skilled researchers behind it are vital to addressing global health challenges, and driving innovation in disease management, prevention, and cure.

The National Imaging Facility (NIF) invests in state-of-the-art equipment and partners with world-class experts to process and interpret data and apply imaging to solve challenging health problems.

CEO Prof Wojtek Goscinski said he was proud of the NIF’s partnerships which enable the translation of discoveries through to real world applications to improve the health of the population.

“Advanced imaging techniques make it possible to deepen our understanding of health and disease in the human body through visualisation,” Prof Goscinski said.

“Imaging already plays a critical role in healthcare, and the acceleration of its advancements in biomedicine are positioning us, and our colleagues world-wide to continue this work well into the future.”

“We are supportive of the efforts of CZI and I’m excited for NIF to work alongside them and our other international imaging colleagues, building a cutting-edge imaging community at the forefront of global imaging research,” Prof Goscinski said.

You can find out more about Imaging the Future Week here.

Keep scrolling to check out some of the impressive imaging work from a few of the Australian National Imaging Facility’s Nodes.

Time-of-flight angiography of the human brain using 7 Tesla MRI – courtesy of the Centre for Advanced Imaging, University of Queensland

Human Tooth CT scan – courtesy of Diana Patalwala, University of Western Australia

Angiogram scanned on the Siemens 3T Skyra magnet – courtesy of the Large Animal Research and Imaging Facility, South Australian Health and Medical Research Institute

Tractography template image of a sham rat – courtesy of David Wright, The Florey Institute of Neuroscience and Mental Health

Ape-y ending for sick Orangutan at the National Imaging Facility SA Node

Ape-y ending for sick Orangutan at the National Imaging Facility SA Node

Image credit: Adrian Mann

Puspa, the 46-year-old female Sumatran Orangutan from Adelaide Zoo was taken to the South Australian Health and Medical Research Institute Preclinical, Imaging and Research Laboratories (SAHMRI PIRL) for CT imaging last year to investigate the cause of a sudden change in behaviour and suspected pain in her lower abdomen.

Diagnostic imaging plays a critical role in healthcare in human- and animal- patients, enabling the best evidence for decision making, and coordinating the most effective treatment options.

Sumatran Orangutans are critically endangered, and a patient like Puspa can’t tell us what’s wrong. Having access to a CT scanner within the SAHMRI Large Animal Research and Imaging Facility (LARIF) is extremely valuable for diagnosis and treatment, protecting the species.

The expert team *swung into action* to find the CT scan revealed a number of gallstones, along with inflammation of the bile duct and gallbladder – and determined the best course of action for Puspa’s wellbeing to be surgical removal.

Due to the unique nature of the operation, the veterinary team consulted with human medical experts from Flinders Medical Centre and the Royal Adelaide Hospital to determine the best procedure to remove all the gallstones and gallbladder based on the CT findings.

The uniquely diverse medical team removed nine large gallstones and a gallbladder that was definitely past its prime(ate).

We’re ape-solutely delighted to report that since surgery, Puspa is back to her usual self, but hasn’t been up to any monkey business, leaving her stitches alone. She’s eating well, has been out and about and is climbing.

For more information, contact: Georgia Williams, Research Radiographer and National Imaging Facility Fellow, SAHMRI.

If you’re a fan of gore(illa) (sorry) you can watch the video of Puspa’s surgery below.

You can *hang out* with Puspa at Adelaide Zoo.

COVID-19 Research at LARIF: Using fluoroscopy for lung ventilation analysis

LARIF has teamed up with Australian biomedical company, 4DMedical, and University of Adelaide scientists Associate Professor David Parsons and Dr Martin Donnelly to address the COVID-19 crisis, through testing a novel ventilator, the now patented 4DMedical ‘XV technology’, and a large animal model of Acute Respiratory Distress Syndrome (ARDS).

Associate Professor David Parsons and Dr Martin Donnelly in the LARIF Cath Lab

The NCRIS-enabled facilities and expertise at the Large Animal Research and Imaging Facility (LARIF) NIF Node, located in the South Australian Health and Medical Research Institute (SAHMRI), were utilised by a consortium of doctors, engineers, and medical researchers as part of the Australian Lung Health Initiative (ALHI).

Read More

CT as part of the Forensic Science SA toolkit

A post-mortem examination, or autopsy, is a forensic technique for learning about the conditions of a person’s health at the end of life. These are typically carried out as part of a coronial inquiry to establish the cause of death. A post-mortem may also provide information about undiagnosed medical problems of relevance to family members and the research community.

Read More

National Preclinical PET QA

The NIF Molecular Imaging & Radiochemistry (MIR) Theme is a group of NIF Fellows, Directors, and users of NIF facilities that focus on state-of-the-art radiochemistry and molecular imaging applications using PET, SPECT, and MRI.

Integrating preclinical PET systems into a national resource requires the development of defined QA programs to monitor and integrate the data from individual systems. Hence, the MIR Theme initiated a national quality assurance (QA) program for the NIF preclinical PET instruments.

Read More

Impact of surgical lymph node removal

The impact of surgical lymph node removal on metastatic disease and the response to immunotherapy

Surgical resection of cancer remains the frontline therapy for millions of cancer patients every year, but disease recurrence after surgery is common with a relapse rate of around 45% for lung cancer. Relapse rates are expected to decline, with new immunotherapies producing extraordinary successes in several solid cancers. Immunotherapy administered after surgery could potentially ‘mop up’ small persisting cancer deposits that lead to disease recurrences. However, uninvolved (tumour-free) draining lymph nodes are the primary ‘factory’ for generating anti-cancer T cell responses; hence, should they be removed, subsequent immunotherapy may be negatively impacted. The aim of this project is to determine in murine models if the response of metastatic disease to immunotherapy is reduced following tumour lymph node resection.

Dr Vanessa Fear of the School of Biomedical Sciences, at The University of Western Australia, is investigating if the response of metastatic disease to immunotherapy is reduced following tumour draining lymph node resection. To do this, the Tumour Immunology Group is using an AB1 Model of metastatic disease. Tumour progression is visualised using IVIS imaging and histology following resection to track the effectiveness of treatment regimes. Ultimately, the team will seek to determine the impact of lymph node removal at the time of tumour resection to subsequent immunotherapeutic outcomes.

Fig 1: IVIS imaging from AB1-HA tumour model. Mice received AB1-HA_LUC i.v. and lung tumour development monitored on the InVivo Imaging System (IVIS, Lumina II imager). At the imaged timepoints mice received intrapertioneal injections of luciferin (150µg/g) and tumour burden was measured on the IVIS in photons/sec (p/s). A, tumour progression day 14 to day 19.

The research project involves collaboration with the Centre for Microscopy, Characterisation and Analysis, the West Australian Node for the National Imaging Facility to image, visualise and characterise the development of lung metastatic disease using the IVIS Lumina II in vivo bioluminescence imager with the help of Living Image Software (Caliper Life Sciences).

Fig 2: IVIS imaging and histology from AB1-HA tumour model.Comparison of IVIS reading with lung H&E staining showing AB1-HA tumour from the same mouse. Tumour volume determined using FIJI software.

The team have completed preliminary studies determining a 55% metastatic disease onset after surgical resection of the primary tumour. Current investigations in tumour resection and lymph node resection indicate temporal changes in onset of metastatic disease compared to mice with intact lymph nodes.

Further investigations into the impact of lymph node resection on immunotherapy are underway. Future investigations will include other models including lung adenocarcinoma, melanoma, and breast cancer.

Collaborators

School of Medicine, the University of Western Australia

School of Biomedical Sciences, University of Western Australia

Centre for Microscopy, Characterisation and Analysis, the University of Western Australia

This story was contributed by the University of Western Australia. For more information, contact Dr Vanessa Fear or Diana Patalwala.

Privacy Settings
Youtube
Vimeo
Google Maps