Victorian imaging network meets to map out innovative future

[Pictured: VBIC Annual Network Meeting guest speakers Prof Lindy Fitzgerald and Prof Amy Brodtmann] 

Innovation, industry partnerships and commercialisation will be among the topics discussed at a meeting bringing together NIF’s capabilities from around Victoria on November 24. 

The annual Victorian Biomedical Imaging Capability (VBIC) network meeting will attract researchers, clinicians and industry partners to Monash Biomedical Imaging in Melbourne. 

Participants will represent NIF nodes at the University of Melbourne, Monash, Swinburne, the Florey, Olivia Newton John Cancer Research Institute and La Trobe University. 

Neurologist Prof Amy Brodtmann will draw on her interests in imaging, stroke and dementia to present research findings from the Cognitive Health Initiative at Monash and Alfred Health  

Guest speaker Prof Melinda Fitzgerald from Curtin University and the Perron Institute will present on a national initiative she heads as CEO, called Connectivity, the Mission for Traumatic Brain Injury.  The initiative includes use of MRI and clinical biomarkers in a national trial to improve the diagnosis and prognosis of traumatic brain injury. 

Sessions at the meeting will also cover the work of imaging experts in research programs employing ultra-high field MRI, CT and PET; as well as presentations from experts in industry partnering and commercialisation. 

NIF Chief Executive Officer Prof Wojtek Goscinski said the meeting would provide a platform for early career researchers and emerging leaders, a showcase for new-generation imaging, and opportunities for important in-person networking. 

It would also enable discussion on the NIF Imaging Roadmap, including supporting innovation and ensuring Australia’s international comparative advantage, Prof Goscinski said. 

The roadmap will add to the substantial impact and jobs that VBIC and NIF have already delivered, with a recent report estimating more than $350 million in economic activity for Victoria. 

VBIC nodes have grown to employ more than 150 FTE imaging staff, and partner with more than 90 organisations, including Austin Health, CSIRO, Melbourne Health, Mental Health Research Institute and the Peter MacCallum Cancer Centre. 

Capital investments have reached $37 million, providing access to human and preclinical MRI and PET-CT, preclinical DEXA scanners and confocal endomicroscopy, as well as magnetoencephalography and nuclear scintigraphy. 

A massive $235 million in major grants has been secured, enabling new research projects in cancer, infection and inflammation, brain function, epilepsy, dementia and even long-term aspirin use. 

Click here for more information about the VBIC network meeting and full programme.

NIF to demonstrate impact of coordinated data and AI at RANZCR ASM 2022

National Imaging Facility (NIF) will host a session at the Royal Australian and New Zealand College of Radiologists (RANZCR) 72nd Annual Scientific Meeting (ASM) this month.

The NIF Showcase will highlight critical expertise and human imaging projects from across Australia’s advanced imaging network, including regional MRI and life-changing imaging for Australians living with epilepsy.


Point-of-care imaging leveraging AI to grow healthcare equity in regional Australia

Head of Diagnostic and Interventional Radiology research at Alfred Hospital, Prof Meng Law will present on new technology for point-of-care imaging and regional MRI. Prof Law is an expert on neuroimaging and AI, and his presentation will focus on federated deep learning for signal-to-noise ratio imaging and motion correction, using NIF’s low-field magnetic resonance network.

NIF is deploying four low-field MRI scanners to remote and regional sites to help researchers apply this affordable imaging technology in rural areas. These scanners will be used to understand how this fast-developing technology can be used to diagnose stroke, traumatic brain injury, and other conditions after testing in research laboratories at NIF nodes.


Imaging networks and datasets to support life-changing platform for more than 150,000 Australians living with epilepsy

Clinical Director of The Florey Institute of Neuroscience and Mental Health, Prof Graeme Jackson will present on the Australian Epilepsy Project (AEP), reducing diagnosis uncertainty and fast-tracking optimal treatment by combining advanced imaging, genetics, cognition, and artificial intelligence (AI).

Prof Jackson is the Chief Investigator on the AEP Platform, which will drive major advances in decision support tools for epilepsy, and NIF’s national human MR network is set to enable scanning across Australia.

The data collected by the AEP will provide a rich resource for addressing many other traditional science and mechanistic questions in epilepsy to progress epilepsy research worldwide.


NIF CEO Prof Wojtek Goscinski said the invitation to showcase NIF at the RANZCR ASM was an opportunity to highlight the transformation of imaging through AI and big data, and to underline the unique capabilities that NIF provides.

“We’re privileged to have world-class speakers Prof Meng Law and Prof Graeme Jackson presenting on two projects that are supported by data collections and the AI models around them, which will lead to better treatment and diagnosis for Australians,” Prof Goscinski said.

The impact of imaging in radiology is only increasing, with experts now able to extract quantifiable information from ever larger data collections by applying machine learning methods such as deep learning and convolutional neural networks.

Big data and AI have a transformative effect on radiology, enhancing patient outcomes by distinguishing irregularities and patterns in data collections, and enabling diagnosis with speed and accuracy.

“NIF is focused on keeping Australia at the forefront of imaging technology and imaging data analytics, and is exploring a range of activities to increase uptake of machine learning in imaging, including data infrastructure and imaging quality,” he said.

The NIF Showcase session will also see a panel of experts discuss opportunities for collaboration between NIF and RANZCR for the benefit of medical research.

View the NIF Showcase agenda below:

RANZCR ASM NIF Showcase: Friday 28 October, 08:30-10:00

TIMETOPICSPEAKER
8:30IntroductionA/Prof Sanjay Jeganathan
RANZCR President
8:35Introduction to National Imaging FacilityProf Wojtek Goscinski
NIF Chief Executive Officer
8:45Point of Care Imaging and Regional MRI 
NIF Low Field MR Network
Federated Deep Learning for SNR, Motion Correction
Prof Meng Law
Professor and Director of Radiology, Alfred Health
Director of iBRAIN
Monash University
9:05The Australian Epilepsy Project
MR guided focused ultrasound
Prof Graeme Jackson
Chief Investigator, Australian Epilepsy Project
Clinical Director, The Florey Institute of Neuroscience and Mental Health
9:25Panel discussion
RANZCR and NIF: Opportunities for collaboration for the benefit of Australian healthcare
Chair: Prof Paul Parizel
NIF UWA Node Director
Chair, UWA Medical School
David Hartley Chair in Radiology, UWA Medical School

Prof Wojtek Goscinski

Prof Meng Law

Prof Graeme Jackson

A/Prof Christen Barras
Radiologist
Co-Convenor RANZCR ASM 2022

Dr Lauren Oakden Rayner
Director, Research
Royal Adelaide Hospital Medical Imaging

The RANZCR ASM will take place at the Adelaide Convention Centre on 27–30 October 2022.

Under the theme of Reflect, Revive, Reimagine, the 72nd RANZCR ASM will be the largest meeting to date, with an innovative scientific program of over 250 presentations across 70+ sessions.

The four-day conference has lined up leading international and local radiologists to share best practices and highlight emerging medical advancements.

Inaugural NIF Scientific Symposium kicks off #NationalScienceWeek

Leading researchers, clinicians and industry attended the inaugural National Imaging Facility (NIF) Scientific Symposium on 12 August.

The event kicked off National Science Week for NIF, highlighting the critical role of collaboration in translating research challenges to benefit industry and keep Australians healthy, with the theme ‘National partnerships for innovation and impact’.

NIF CEO Prof Wojtek Goscinski said the Symposium was an excellent opportunity to highlight ground-breaking work from Australia’s world-class imaging community.

“It was a privilege to host experts from across Australia, including keynote speakers Prof Graeme Jackson, Prof Louise Emmet and Prof Gemma Figtree, whose work is at the leading edge of imaging globally,” Prof Goscinski said.

“I’d also like to extend my thanks to the presenters who delivered an excellent Technology Showcase session, and Health and Medical Translational Challenges session.

“A particular highlight was hearing from our industry partners, including Telix Pharmaceuticals, Clarity Pharmaceuticals, Cochlear and Nyrada, who discussed the way they engage with national imaging research infrastructure.

“NIF is privileged to have a strong network of world-leading expertise at our fingertips and it was an honour to bring some of these people together to present their work and share ideas at the 2022 Symposium,” he said.

Keynote presentations of the Symposium included:

  • ‘The Australian Epilepsy Project’, Prof Graeme Jackson
  • From mouse to Medicare: the PSMA story in Australia’, Prof Louise Emmett
  • Coronary artery imaging to inform the next Frontier of heart attack prevention’, Prof Gemma Figtree

The Technology Showcase session highlighted NIF’s latest capabilities, including tools for processing and interpreting data, and applications of imaging to solve complex problems, including:

  • ‘Ultra-high field magnetic resonance imaging’, Prof Leigh Johnston and Prof Markus Barth
  • ‘Bringing imaging to rural Australia with a national network of low field mobile MR scanners’, Dr Zhaolin Chen
  • ‘Australian Imaging Service: The national platform for trusted data management and analysis’, Dr Ryan Sullivan
  • ‘Magnetic Particle Imaging’, Dr Andre Bongers
  • An insight into MicroCT imaging: recent advances, applications and impact on research and innovation’, Ms Diana Patalwala
  • Preclinical Research: The Crucial Step in Medical Advancements’, Dr Chris Christou

The Health and Medical Translation Challenges session provided an opportunity for attendees to hear from clinicians and researchers about their journey to making translational impact, including:

  • Neuroimaging in clinical trials: Perspectives of a clinician-researcher’, A/Prof Sylvia Gustin
  • The Australasian Radiopharmaceutical Trials network (ARTnet)’, A/Prof Ros Francis

The Industry Discussion Panel opened up conversation on how imaging accelerates and underpins innovation and future opportunities, with speakers:

  • Dr David Cade, Chief Executive Officer, Telix Pharmaceuticals Asia Pacific
  • Dr Matt Harris, Chief Scientific Officer, Clarity Pharmaceuticals
  • Dr Zachary Smith, Director, Algorithms and Applications, Cochlear
  • Dr Jasneet Parmar, Neuroscience Researcher, Nyrada Inc

#WorldHealthDay: Imaging unlocking research to keep people healthy

#WorldHealthDay: As Australia’s advanced imaging network, we’re focused on addressing national science and research priorities to help keep people healthy. Our expertise, equipment and services are critical to Australia’s ability to translate health discoveries, undertake clinical trials and commercialise medical products.

The importance of protecting Australians from health threats is critical, as is Australia’s strong medical research capability and reputation for quality and standards.

The National Imaging Facility is unlocking solutions to the world’s biggest imaging challenges across commercial, clinical and research fields. We have helped Australians innovate in fields such as bioengineering, clinical science, biology, medical technology, pharmaceutical and non-pharmaceutical therapies.

Thousands of scientists, doctors, and professionals across hundreds of Australian institutions, companies and research organisations use our work to help answer their medical research questions. We also work with engaged volunteers and patients who make a valuable contribution to health and discovery by being part of research.

We’ve included some examples of the medical projects we’re proud to have partnered with to keep people healthy below:

Dr Ciara Duffy from Western Australia’s Harry Perkins Institute of Medical Research imaging the investigation of honeybee venom to treat breast cancer cells at the University of Western Australia’s Centre for Microscopy, Characterisation and Analysis in collaboration with Microscopy Australia

Associate Professor David Parsons and Dr Martin Donnelly performing preclinical testing of a ground-breaking and simple to use ‘field ventilator’ that can be locally produced at a low cost from easily acquired parts at SAHMRI, in collaboration with 4DMedical, and the University of Adelaide

Supporting Australian trials of Biogen’s Aducanumab (Aduhelm), the first disease modifying therapy for Alzheimer’s disease approved by the United States Food and Drug Administration (FDA) with the University of Melbourne, Herston Imaging Research Facility, the Hunter Medical Research Institute, Australian Imaging Biomarkers and Lifestyle Study of Ageing at The Florey Institute of Neuroscience and Mental Health and Austin Health

#ImagingTheFuture Week: Unlocking solutions to major health challenges

#ImagingTheFuture Week: Unlocking solutions to major health challenges


Chan Zuckerberg Initiative’s (CZI) Imaging the Future Week puts a spotlight on the significance of imaging science in biomedicine, and the importance of building a vibrant imaging community across the world to tackle these challenges at scale.

Imaging science and the highly skilled researchers behind it are vital to addressing global health challenges, and driving innovation in disease management, prevention, and cure.

The National Imaging Facility (NIF) invests in state-of-the-art equipment and partners with world-class experts to process and interpret data and apply imaging to solve challenging health problems.

CEO Prof Wojtek Goscinski said he was proud of the NIF’s partnerships which enable the translation of discoveries through to real world applications to improve the health of the population.

“Advanced imaging techniques make it possible to deepen our understanding of health and disease in the human body through visualisation,” Prof Goscinski said.

“Imaging already plays a critical role in healthcare, and the acceleration of its advancements in biomedicine are positioning us, and our colleagues world-wide to continue this work well into the future.”

“We are supportive of the efforts of CZI and I’m excited for NIF to work alongside them and our other international imaging colleagues, building a cutting-edge imaging community at the forefront of global imaging research,” Prof Goscinski said.

You can find out more about Imaging the Future Week here.

Keep scrolling to check out some of the impressive imaging work from a few of the Australian National Imaging Facility’s Nodes.

Time-of-flight angiography of the human brain using 7 Tesla MRI – courtesy of the Centre for Advanced Imaging, University of Queensland

Human Tooth CT scan – courtesy of Diana Patalwala, University of Western Australia

Angiogram scanned on the Siemens 3T Skyra magnet – courtesy of the Large Animal Research and Imaging Facility, South Australian Health and Medical Research Institute

Tractography template image of a sham rat – courtesy of David Wright, The Florey Institute of Neuroscience and Mental Health

The Australian Epilepsy Project

The Australian Epilepsy Project (AEP) will change the lives of people living with epilepsy by reducing uncertainty surrounding diagnosis and fast-tracking the path to optimal treatment using the combination of advanced imaging, genetics, cognition, and artificial intelligence. Such improvements will result in better outcome prediction at disease onset, a higher rate of seizure freedom, reduced economic burden of disease and will increase life-participation of people with epilepsy. 

Read More

MRtrix3

MRtrix3: Advanced tools for the analysis of diffusion MRI data

Diffusion-weighted MRI (dMRI) is a commonly-used medical imaging modality for the investigation of tissue microstructure, exploiting the local hindrance and restriction of water diffusion as indirect probes. The neuroimaging research community utilises this technology extensively for the study of brain white matter in particular, reconstructing structural connectivity pathways and analysing estimated tissue properties.

Read More

Local Connectivity Networks Disrupted by Sports-Related Concussion

From https://journals.sagepub.com/doi/10.1177/2059700219861200
Functional local connectivity is decreased in acutely concussed players compared to controls. (a) Statistically significant brain regions at family-wise error rate p < 0.05; 5000 permutations using threshold-free cluster enhancement. Cool-scaled color bar denotes the magnitude of voxel t-values. (b) Individual-level z-normalized fMRI local connectivity values where each grey circle denotes an individual subject; red line is the group mean; red shaded area is the 95th percentile of the mean value; and blue shaded area is one standard deviation from the mean.

Head injuries, including concussion, are taken very seriously in sporting professions. To date, making an accurate diagnosis of acute concussion has been made difficult by the lack of a reliable direct biomarker for injury and recovery. This diagnostic gap can lead to unknown recovery periods and potentially long-term impacts for athletes.

 

Researchers at the Florey Institute of Neuroscience and Mental Health set out to understand functional brain changes in professional players in the Australian Football League who had been diagnosed with acute sport-related concussion.

 

The world-first study, published in the Journal of Concussion, utilised NIF infrastructure, the 3T Trio and Skyra MRI scanners, and NIF expertise, Facility Fellows Shawna Farquharson and David Abbott.

 Functional MRI (fMRI) was undertaken to assess functional connectivity alongside anatomical imaging. Although no anatomical damage was observed, the authors described a decreased intrinsic fMRI connectivity within the right frontoparietal regions in acutely concussed footballers. In other words, all 20 concussed athletes showed reduced activity in parts of the brain responsible for executive function, working memory and switching tasks.

 

“By looking at how the different parts of the brain talk to each other, we can see how these three brain networks are affected, and these changes may help explain the symptoms we see in concussed players.” – Dr Mangor Pedersen, study co-author, from the Florey Institute of Neuroscience and Mental Health.

 

One interesting finding in this study is that concussion appears to affect particular networks in the brain. These findings are in agreement with some of the typical clinical features of concussion; however, they are based on trends seen as a group. In future, the authors intend to investigate individual brain networks and develop guidelines for personalised treatment and recovery.

 

This story was contributed by the Florey Institute of Neuroscience and Mental Health NIF Node. For more information, please contact Shawna Farquharson or David Abbott.

 

More information about concussion is available here, or by speaking to your GP.

Privacy Settings
Youtube
Vimeo
Google Maps