Creating a Lizard Brain Atlas

Until recently, reptilian evolutionary studies lacked an important resource – a lizard brain atlas. As the subject of numerous ecological and behavioural studies, the Australian tawny dragon (Agamidae: Ctenophorus decresii) was an ideal candidate for creating a high-resolution MRI atlas of a representative scaled reptile (squamata). Such data is not only a resource for studies of the genus but also informs environmental decision making through an improved understanding of animal adaptation and evolution.

Read More

Micro-CT of re-regeneration in lizard tails

Re-regeneration to reduce adverse effects associated with tail loss

Caudal autotomy, the ability to drop and regenerate a portion of the tail, is a widely used anti-predation strategy in many lizard species. Intra-vertebral autotomy planes within a series of the lizard’s caudal vertebrae allow individuals to autotomise a portion of their tail to escape a threat, such as a predator’s grasp. Once autotomised, the tail regenerates with a rigid cartilage rod in place of the original bony vertebrae. Although an effective anti-predation strategy, it has both short and long-term costs to the individual associated with physical tail loss, as well as the energy required for regeneration. Additionally, a regenerated tail lacks autotomy planes, where subsequent autotomy events having to at a more proximal position at a caudal vertebra with an intact autotomy plane.

Read More
Privacy Settings
Youtube
Vimeo
Google Maps