Understanding Feto-Placental Vasculature

Proper vascular development of the human placenta is crucial for meeting the metabolic needs of the developing fetus during pregnancy. Maternal environmental stressors such as malnutrition disrupt the elaboration of the feto-placental vasculature that, in turn, impacts on placental function and results in reduced fetal growth. The ramifications of this are not only on short-term foetal health but also on long-term health outcomes. Indeed, distortion in placental shape and size strongly associate with later adult health outcomes such as cardiovascular disease, obesity and cancer.

Read More

MRI investigations of placental structure and function

Preeclampsia is a medical condition affecting up to 3% of pregnant women in Australia. Characterised by high blood pressure and protein in the urine, it is a leading cause of morbidity and mortality in both mothers and infants. Furthermore, preeclampsia has been linked to long-term health consequences for both mother and child.

3-D reconstructions of the placenta from MRI images. (left) Foetal surface view of the placenta. (middle) Maternal surface view of the placenta with an overlay showing maternal vasculature. (right) Side view showing maternal vasculature alone

Hampering early diagnosis, prevention, and treatment efforts is a lack of understanding of preeclampsia pathophysiology.  Currently, the cause of this condition is unknown. Prof Annemarie Hennessy and a team of researchers at Western Sydney University are utilising the WSU NIF Node, in collaboration with NIF Fellow Dr Timothy Stait-Gardner, to learn more about this serious condition.

In this project, high-resolution magnetic resonance imaging is being used to examine placental changes in vivo in mouse models of preeclampsia. In addition to the in vivo studies, high-resolution scans of fixed mouse placentas, normal and abnormal, have been used to create a placental atlas. The creation of a placental atlas and a number of publications have provided important information on mouse models of preeclampsia, including its characterisation and how to differentiate between different models of preeclampsia from T2 maps of the mouse placentas. These works have provided some of the basis for investigations of new treatments of preeclampsia.

Publications:

This story was contributed by the Western Sydney University NIF Node. For further information, please contact Dr Timothy Stait-Gardner.

Privacy Settings
Youtube
Vimeo
Google Maps